Area Under Curves Question 10

Question 10 - 2024 (30 Jan Shift 2)

The area of the region enclosed by the parabola $(y-2)^{2}=x-1$, the line $x-2 y+4=0$ and the positive coordinate axes is

Show Answer

Answer (5)

Solution

Solving the equations

$(y-2)^{2}=x-1$ and $x-2 y+4=0$

$$ x=2(y-2) $$

Description of the image

$\frac{x^{2}}{4}=x-1$

$x^{2}-4 x+4=0$

$(x-2)^{2}=0$

$x=2$

Exclose area (w.r.t. y-axis) $=\int_{0}^{3} \mathrm{x} d y-$ Area of $\Delta$.

$$ \begin{aligned} & =\int_{0}^{3}\left((y-2)^{2}+1\right) d y-\frac{1}{2} \times 1 \times 2 \ & =\int_{0}^{3}\left(y^{2}-4 y+5\right) d y-1 \ & =\left[\frac{y^{3}}{3}-2 y^{2}+5 y\right]_{0}^{3}-1 \text { hongo } \ & =9-18+15-1=5 \end{aligned} $$