Area Under Curves Question 1

Question 1 - 2024 (01 Feb Shift 1)

The area enclosed by the curves $x y+4 y=16$ and $x+y=6$ is equal to :

(1) $28-30 \log _{e} 2$

(2) $30-28 \log _{e} 2$

(3) $30-32 \log _{e} 2$

(4) $32-30 \log _{e} 2$

Show Answer

Answer (3)

Solution

$x y+4 y=16 \quad, \quad x+y=6$

$y(x+4)=16$

$\mathrm{x}+\mathrm{y}=6$

on solving, (1) $\backslash &$ (2)

we get $x=4, x=-2$

Description of the image

$$ \begin{gathered} \text { Area }=\int_{-2}^{4}\left((6-x)-\left(\frac{16}{x+4}\right)\right) d x \ =30-32 \ln 2 \end{gathered} $$