Application Of Derivatives Question 4

Question 4 - 2024 (29 Jan Shift 2)

The function $f(x)=\frac{x}{x^{2}-6 x-16}, x \in \mathbb{R}-{-2,8}$

(1) decreases in $(-2,8)$ and increases in

$(-\infty,-2) \cup(8, \infty)$

(2) decreases in $(-\infty,-2) \cup(-2,8) \cup(8, \infty)$

(3) decreases in $(-\infty,-2)$ and increases in $(8, \infty)$

(4) increases in $(-\infty,-2) \cup(-2,8) \cup(8, \infty)$

Show Answer

Answer (2)

Solution

$f(x)=\frac{x}{x^{2}-6 x-16}$

Now,

$\mathrm{f}^{\prime}(\mathrm{x})=\frac{-\left(\mathrm{x}^{2}+16\right)}{\left(\mathrm{x}^{2}-6 \mathrm{x}-16\right)^{2}}$

$\mathrm{f}^{\prime}(\mathrm{x})<0$

Thus $f(x)$ is decreasing in

$(-\infty,-2) \cup(-2,8) \cup(8, \infty)$