Chemical Kinetics Question 1

Question 1 - 2024 (01 Feb Shift 1)

The ratio of $\frac{{ }^{14} \mathrm{C}}{{ }^{12} \mathrm{C}}$ in a piece of wood is $\frac{1}{8}$ part that of atmosphere. If half life of ${ }^{14} \mathrm{C}$ is 5730 years, the age of wood sample is _______ years.

Show Answer

Answer (17190)

Solution

$\lambda t=\ln \frac{\left({ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}\right){\text {atmosphere }}}{\left({ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}\right){\text {wood sample }}}$

As per the question,

$\frac{\left({ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}\right){\text {wood }}}{\left({ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}\right){\text {atmosphere }}}=\frac{1}{8}$

So, $\lambda t=\ln 8$

$\frac{\ln 2}{t_{1 / 2}} \mathrm{t}=\ln 8$

$\mathrm{t}=3 \times \mathrm{t}_{1 / 2}=17190$ years