Units And Dimensions Question 1

Question 1 - 24 January - Shift 1

Match List I with List II

LIST I LIST II
A. Planck’s constant (h) I. $[M^{1} L^{2} T^{-2}]$
B. Stopping potential (Vs) II. $[M^{1} L^{1} T^{-1}]$
C. Work function $(\varnothing)$ III. $[M^{1} L^{2} T^{-1}]$
D. Momentum (p) IV. $[M^{1} L^{2} T^{-3} A^{-1}]$

(1) A-III, B-I, C-II, D-IV

(2) A-III, B-IV, C-I, D-II

(3) A-II, B-IV, C-III, D-I

(4) A-I, B-III, C-IV, D-II

Show Answer

Answer: (2)

Solution:

Formula: Dimensional equation

(A) Planck’s constant

$h v=E$

$h=\frac{E}{v}=\frac{M^{1} L^{2} T^{-2}}{T^{-1} \text{ hong }}=M^{1} L^{2} T^{-1}$

(B) $E=qV$

$ V=\frac{E}{q}=\frac{M^{1} L^{2} T^{-2}}{A^{1} T^{1}}=M^{1} L^{2} T^{-3} A^{-1}(IV) $

(C) $\phi($ work function $)=$ energy

$ =M^{1} L^{2} T^{-2} $

(D) Momentum (p) = F.t

$ \begin{aligned} & =M^{1} L^{1} T^{-2} T^{1} \\ & =M^{1} L^{1} T^{-1} \end{aligned} $