Mechanical Properties Of Fluids Question 3

Question 3 - 29 January - Shift 1

Surface tension of a soap bubble is $2.0 \times 10^{-2} Nm^{-1}$. Work done to increase the radius of soap bubble from $3.5 cm$ to $7 cm$ will be : [Take $\pi=\frac{22}{7}$ ]

(1) $0.72 \times 10^{-4} J$

(2) $5.76 \times 10^{-4} J$

(3) $18.48 \times 10^{-4} J$

(4) $9.24 \times 10^{-4} J$

Show Answer

Answer: (3)

Solution:

Formula: Surface Tension

Surface area of soap bubble $=2 \times 4 \pi R^{2}$

Work done $=$ change in surface energy $\times T_S$

$=T_S \times 8 \pi \times(R_2^{2}-R_1^{2})$

$=2 \times 10^{-2} \times 8 \times \frac{22}{7} \times 49 \times \frac{3}{4} \times 10^{-4}$

$=18.48 \times 10^{-4} J$