Vector Algebra Question 15

Question 15 - 31 January - Shift 1

Let $\overrightarrow{{}a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\overrightarrow{{}b}$ and $\overrightarrow{{}c}$ be two nonzero vectors such that $|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}|$ and $\overrightarrow{{}b} \cdot \overrightarrow{{}c}=0$. Consider the following two statement:

(A) $|\overrightarrow{{}a}+\lambda \overrightarrow{{}c}| \geq|\overrightarrow{{}a}|$ for all $\lambda \in \mathbb{R}$.

(B) $\vec{a}$ and $\vec{c}$ are always parallel

(1) only (B) is correct

(2) neither (A) nor (B) is correct

(3) only (A) is correct

(4) both (A) and (B) are correct.

Show Answer

Answer: (3)

Solution:

Formula: Properties of Scalar product of vectors

$|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}+\vec{b}-\vec{c}|^{2}$

$2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}=2 \vec{a} \cdot \vec{b}-2 \vec{b} \cdot \vec{c}-2 \vec{c} \cdot \vec{a}$

$4 \vec{a} . \vec{c}=0$

$B$ is incorrect

$|\overrightarrow{{}a}+\lambda \overrightarrow{{}c}|^{2} \geq|\overrightarrow{{}a}|^{2}$

$\lambda^{2} c^{2} \geq 0$

True $\forall \lambda \in \mathbb{R}$

(A) is correct.