Vector Algebra Question 1

Question 1 - 24 January - Shift 1

Let $m \vec{u}=\hat{i}-\hat{j}-2 \hat{k}, \vec{v}=2 \hat{i}+\hat{j}-\hat{k}, \vec{v} \cdot \vec{w}=2$

$\vec{v} \times \vec{w}=\vec{u}+\lambda \vec{v}$. Then $\vec{u} \cdot \vec{w}$ is equal to

(1) 1

(2) $\frac{3}{2}$

(3) 2

(4) $-\frac{2}{3}$

Show Answer

Answer: (1)

Solution:

Formula: Scalar product of vectors, Vactor product of vectors

$\overrightarrow{{}u}=(1,-1,-2), \overrightarrow{{}v}=(2,1,-1), \overrightarrow{{}v} \cdot \overrightarrow{{}w}=2$

$\overrightarrow{{}v} \times \overrightarrow{{}w}=\overrightarrow{{}u}+\lambda \overrightarrow{{}v}$

Taking dot with $\overrightarrow{{}w}$ in (1)

$\overrightarrow{{}w} \cdot(\overrightarrow{{}v} \times \overrightarrow{{}w})=\overrightarrow{{}u} \cdot \overrightarrow{{}w}+\lambda \overrightarrow{{}v} \cdot \overrightarrow{{}w}$

$\Rightarrow 0=\overrightarrow{{}u} \cdot \overrightarrow{{}w}+2 \lambda$

Taking dot with $\overrightarrow{{}v}$ in (1)

$\vec{v} \cdot(\vec{v} \times \vec{w})=\vec{u} \cdot \vec{v}+\lambda \vec{v} \cdot \vec{v}$

$\Rightarrow 0=(2-1+2)+\lambda(6)$

$\lambda=-\frac{1}{2}$

$\Rightarrow \overrightarrow{{}u} \cdot \overrightarrow{{}w}=-2 \lambda=1$