Three Dimensional Geometry Question 5

Question 5 - 24 January - Shift 2

Let the plane containing the line of intersection of the planes

P1: $x+(\lambda+4) y+z=1$ and

P2: $2 x+y+z=2$ pass through the points $(0,1,0)$ and $(1,0,1)$. Then the distance of the point $(2 \lambda, \lambda,-\lambda)$ from the plane $P 2$ is

(1) $5 \sqrt{6}$

(2) $4 \sqrt{6}$

(3) $2 \sqrt{6}$

(4) $3 \sqrt{6}$

Show Answer

Answer: (4)

Solution:

Formula: Family of Planes, A Plane and A Point

Equation of plane passing through point of intersection of P1 and P2

$P=P1+kP 2$

$(x+(\lambda+4) y+z-1)+k(2 x+y+z-2)=0$

Passing through $(0,1,0)$ and $(1,0,1)$

$(\lambda+4-1)+k(1-2)=0$

$(\lambda+3)-k=0$

Also passing $(1,0,1)$

$(1+1-1)+k(2+1-2)=0$

$1+k=0$

$k=-1$

put in (1)

$\lambda+3+1=0$

$\lambda=-4$

Then point $(2 \lambda, \lambda,-\lambda)$

$ (-8,-4,4) $

$d=|\frac{-16-4+4-2}{\sqrt{6}}|$

$d=\frac{18}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}=3 \sqrt{6}$