Three Dimensional Geometry Question 25

Question 25 - 31 January - Shift 1

Let the shortest distance between the lines $L: \frac{x-5}{-2}=\frac{y-\lambda}{0}=\frac{z+\lambda}{1}, \lambda \geq 0$ and $L_1: x+1=y-$ $1=4-z$ be $2 \sqrt{6}$. If $(\alpha, \beta, \gamma)$ lies on $L$, then which of the following is NOT possible?

(1) $\alpha+2 \gamma=24$

(2) $2 \alpha+\gamma=7$

(3) $2 \alpha-\gamma=9$

(4) $\alpha-2 \gamma=19$

Show Answer

Answer: (1)

Solution:

Formula: Skew Lines

$\overrightarrow{{}b_1} \times \overrightarrow{{}b_2}= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & 1 \\ 1 & 1 & -1\end{vmatrix} =-\hat{i}-\hat{j}-2 \hat{k}$

$\overrightarrow{{}a_2}-\overrightarrow{{}a_1}=6 \hat{i}+(\lambda-1) \hat{j}+(-\lambda-4) \hat{k}$

$2 \sqrt{6}=|\frac{-6-\lambda+1+2 \lambda+8}{\sqrt{1+1+4}}|$

$|\lambda+3|=12 \Rightarrow \lambda=9,-15$

$\alpha=-2 k+5, \gamma=k-\lambda$ where $k \in R$

$\Rightarrow \alpha+2 \gamma=5-2 \lambda=-13,35$