Three Dimensional Geometry Question 22

Question 22 - 30 January - Shift 2

A vector $\overrightarrow{{}v}$ in the first octant is inclined to the $x$ axis at $60^{\circ}$, to the $y$-axis at $45^{\circ}$ and to the $z$-axis at an acute angle. If a plane passing through the points $(\sqrt{2},-1,1)$ and $(a, b, c)$, is normal to $\overrightarrow{{}v}$, then

(1) $\sqrt{2} a+b+c=1$

(2) $a+b+\sqrt{2} c=1$

(3) $a+\sqrt{2} b+c=1$

(4) $\sqrt{2} a-b+c=1$

Show Answer

Answer: (3)

Solution:

Formula: Equation of a plane, Direction ratio and direction cosines

$\hat{v}=\cos 60^{\circ} \hat{i}+\cos 45^{\circ} \hat{j}+\cos \gamma \hat{k}$

$\Rightarrow \frac{1}{4}+\frac{1}{2}+\cos ^{2} \gamma=1 \quad(\gamma \to$ Acute $)$

$\Rightarrow \cos \gamma=\frac{1}{2}$

$\Rightarrow \gamma=60^{\circ}$

Equation of plane is

$\frac{1}{2}(x-\sqrt{2})+\frac{1}{\sqrt{2}}(y+1)+\frac{1}{2}(z-1)=0$

$\Rightarrow x+\sqrt{2} y+z=1$

$(a, b, c)$ lies on it.

$\Rightarrow a+\sqrt{2} b+c=1$