Sequences And Series Question 21

Question 21 - 01 February - Shift 2

Which of the following statements is a tautology ?

(1) $p \to(p \Lambda(p \to q))$

(2) $(p \Lambda q) \to(\sim(p) \to q))$

(3) $(p \Lambda(p \to q)) \to \sim q$

(4) $p \vee(p \Lambda q)$

Show Answer

Answer: (2)

Solution:

Formula: Type of Relations

(i) $p \to(p \Lambda(p \to q))$

$(\sim p) \vee(p \Lambda(\sim p \vee q))$

$(\sim p) V(f \vee(p \Lambda q))$

$\sim p V(p \Lambda q)=(\sim p \vee p) \Lambda(\sim p \vee q)$

$=\sim pVq$

(ii) $(p \Lambda q) \to(\sim p \to q)$

$\sim(p \Lambda q) V(p \vee q)=t$

${a, b, d} V{a, b, c}=V$

Tautology

(iii) $(p \Lambda(p \to q)) \to \sim q$

$\sim(p \Lambda(\sim p V q)) V \sim q=\sim(p \Lambda q) V \sim q=\sim p V \sim q$

Not tantology

(iv) $p V(p \Lambda q)=p$

Not tautology.