Parabola Question 3

Question 3 - 25 January - Shift 1

The distance of the point $(6,-2 \sqrt{2})$ from the common tangent $y=mx+c, m>0$, of the curves $x=2 y^{2}$ and $x=1+y^{2}$ is

(1) $\frac{1}{3}$

(2) 5

(3) $\frac{14}{3}$

(4) $5 \sqrt{3}$

Show Answer

Answer: (2)

Solution:

Formula: Equation of the Tangent at any Point, Distance between point and line

For

$y^{2}=\frac{x}{2}, T: y=mx+\frac{1}{8 m}$

For tangent to $y^{2}+1=x$

$\Rightarrow(mx+\frac{1}{8 m})^{2}+1=x$

$D=0 \Rightarrow m=\frac{1}{2 \sqrt{2}}$

$\therefore T: x-2 \sqrt{2} y+1=0$

$d=|\frac{6+8+1}{\sqrt{9}}|=5$