Parabola Question 1

Question 1 - 24 January - Shift 2

The equations of the sides $AB$ and $AC$ of a triangle $ABC$ are $(\lambda+1) x+\lambda y=4$ and $\lambda x+(1-\lambda) y+\lambda=0$ respectively. Its vertex $A$ is on the $y$-axis and its orthocentre is $(1,2)$. The length of the tangent from the point $C$ to the part of the parabola $y^{2}=6 x$ in the first quadrant is

(1) $\sqrt{6}$

(2) $2 \sqrt{2}$

(3) 2

(4) 4

Show Answer

Answer: (2)

Solution:

Formula: Orthocentre, Condition for Perpendicular Lines, Equation of the tangent at any point

$AB:(\lambda+1) x+\lambda y=4$

$AC: \lambda x+(1-\lambda) y+\lambda=0$

Vertex $A$ is on $y$-axis

$\Rightarrow x=0$

So $y=\frac{4}{\lambda}, y=\frac{\lambda}{\lambda-1}$

$\Rightarrow \frac{4}{\lambda}=\frac{\lambda}{\lambda-1}$

$\Rightarrow \lambda=2$

$AB: 3 x+2 y=4$

$AC: 2 x-y+2=0$

$\Rightarrow A(0,2)$

Let $C(\alpha, 2 \alpha+2)$

Now (Slope of Altitude through C) $(-\frac{3}{2})=-1$

$(\frac{2 \alpha}{\alpha-1})(-\frac{3}{2})=-1 \Rightarrow \alpha=-\frac{1}{2}$

So $C(-\frac{1}{2}, 1)$