Matrices Question 3

Question 3 - 24 January - Shift 2

Let $A$ be a $3 \times 3$ matrix such that $|adj(adj(adj A))|=12^{4}$. Then $|A^{-1} adj A|$ is equal to

(1) $2 \sqrt{3}$

(2) $\sqrt{6}$

(3) 12

(4) 1

Show Answer

Answer: (1)

Solution:

Formula: Properties of Adjoint of a Matrix, Determinant properties

Given $|adj(adj(adj . A))|=12^{4}$

$\Rightarrow|A|^{(n-1)^{3}}=12^{4}$

Given $n=3$

$\Rightarrow|A|^{8}=12^{4}$

$\Rightarrow|A|^{2}=12$

$|A|=2 \sqrt{3}$

We are asked

$\mid A^{-1}$ adj $A \mid$

$=|A^{-1}| \cdot|adj A|$

$=\frac{1}{|A|} \cdot|A|^{3-1}$

$=|A|=2 \sqrt{3}$