Matrices Question 1

Question 1 - 24 January - Shift 1

If $A$ and $B$ are two non-zero $n \times n$ matrices such that $A^{2}+B=A^{2} B$, then

(1) $AB=I$

(2) $A^{2} B=I$

(3) $A^{2}=I$ or $B=I$

(4) $A^{2} B=BA^{2}$

Show Answer

Answer: (4)

Solution:

Formula: Properties of Matrix Multiplication, Properties of Matrix Addition

$A^{2}+B=A^{2} B$

$(A^{2}-I)(B-I)=I$

$A^{2}+B=A^{2} B$

$A^{2}(B-I)=B$

$A^{2}=B(B-I)^{-1}$

$A^{2}=B(A^{2}-I)$

$A^{2}=BA^{2}-B$

$A^{2}+B=BA^{2}$

$A^{2} B=BA^{2}$