Inverse Trigonometric Functions Ans 1

Q1 - 24 January - Shift 1

$\tan ^{-1}(\frac{1+\sqrt{3}}{3+\sqrt{3}})+\sec ^{-1}(\sqrt{\frac{8+4 \sqrt{3}}{6+3 \sqrt{3}}})$ is equal to

(1) $\frac{\pi}{4}$

(2) $\frac{\pi}{2}$

(3) $\frac{\pi}{3}$

(4) $\frac{\pi}{6}$

Show Answer

Answer: (3)

Solution:

Formula: Simplification

$\tan ^{-1}(\frac{1+\sqrt{3}}{3+\sqrt{3}})+\sec ^{-1}(\sqrt{\frac{8+4 \sqrt{3}}{6+3 \sqrt{3}}})$

$=\tan ^{-1}(\frac{1}{\sqrt{3}})+\sec ^{-1}(\frac{2}{\sqrt{3}})=\frac{\pi}{3}$