Indefinite Integration Question 1

Question 1 - 25 January - Shift 1

Let $f(x)=\int \frac{2 x}{(x^{2}+1)(x^{2}+3)} d x$.If $f(3)=\frac{1}{2}(\log _{e} 5-\log _{e} 6)$, then $f(4)$ is equal to

(1) $\frac{1}{2}(\log _{e} 17-\log _{e} 19)$

(2) $\log _{e} 17-\log _{e} 18$

(3) $\frac{1}{2}(\log _{e} 19-\log _{e} 17)$

(4) $\log _{e} 19-\log _{e} 20$

Show Answer

Answer: (1)

Solution:

Formula: Integration by Substitution, Standard formula: Integration of $\int \frac{d x}{a x+b}$,

Put $x^{2}=t$

$\int \frac{d t}{(t+1)(t+3)}=\frac{1}{2} \int(\frac{1}{t+1}-\frac{1}{t+3}) d t$

$f(x)=\frac{1}{2} \ln (\frac{x^{2}+1}{x^{2}+3})+C$

$f(3)=\frac{1}{2}(\ln 10-\ln 12)+C$

$\Rightarrow C=0$

$f(4)=\frac{1}{2} \ln (\frac{17}{19})$