Functions Ans 3

Question 3 - 24 January - Shift 2

If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$,

then $f(\frac{1}{2023})+f(\frac{2}{2023})+\ldots \ldots .+f(\frac{2022}{2023})$ is

equal to

(1) 2011

(2) 1010

(3) 2010

(4) 1011

Show Answer

Answer: (4)

Solution:

Formula: Operations on functions

$f(x)=\frac{4^{x}}{4^{x}+2}$

$f(x)+f(1-x)=\frac{4^{x}}{4^{x}+2}+\frac{4^{1-x}}{4^{1-x}+2}$

$=\frac{4^{x}}{4^{x}+2}+\frac{4}{4+2(4^{x})}$

$=\frac{4^{x}}{4^{x}+2}+\frac{2}{2+4^{x}}$

$=1$

$\Rightarrow f(x)+f(1-x)=1$

Now $f(\frac{1}{2023})+f(\frac{2}{2023})+f(\frac{3}{2023})+\ldots \ldots+$

$ +f(1-\frac{3}{2023})+f(1-\frac{2}{2023})+f(1-\frac{1}{2023}) $

Now sum of terms equidistant from beginning and end is 1

Sum $=1+1+1+$ +1 (1011 times)

$=1011$