Functions Ans 20

Question 20 - 01 February - Shift 2

Let $f: R-{0,1} \to R$ be a function such that $f(x)+f(\frac{1}{1-x})=1+x$. Then $f(2)$ is equal to :

(1) $\frac{9}{2}$

(2) $\frac{9}{4}$

(3) $\frac{7}{4}$

(4) $\frac{7}{3}$

Show Answer

Answer: (2)

Solution:

Formula: Operations on functions

$f(x)+f(\frac{1}{1-x})=1+x$

$x=2 \Rightarrow f(2)+f(-1)=3 \ldots \ldots (1)$

$x=-1 \Rightarrow f(-1)+f(\frac{1}{2})=0 \ldots \ldots (2)$

$x=\frac{1}{2} \Rightarrow f(\frac{1}{2})+f(2)=\frac{3}{2} \ldots \ldots (3)$

$(1)+(3)-(2) \Rightarrow 2 f(2)=\frac{9}{2}$

$\therefore f(2)=\frac{9}{4}$