Functions Ans 11

Question 11 - 29 January - Shift 2

Consider a function $f: \mathbb{N} \to \mathbb{R}$, satisfying

$f(1)+2 f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$

with $f(1)=1$. Then $\frac{1}{f(2022)}+\frac{1}{f(2028)}$ is equal to

(1) 8200

(2) 8000

(3) 8400

(4) 8100

Show Answer

Answer: (4)

Solution:

Formula: Operations on functions

Given for $x \geq 2$

$ f(1)+2 f(2)+\ldots \ldots+xf(x)=x(x+1) f(x) $

replace $x$ by $x+1$

$ \begin{aligned} & \Rightarrow \quad x(x+1) f(x)+(x+1) f(x+1) \\ & =(x+1)(x+2) f(x+1) \\ & \Rightarrow \quad \frac{x}{f(x+1)}+\frac{1}{f(x)}=\frac{(x+2)}{f(x)} \\ & \Rightarrow \quad x(x)=(x+1) f(x+1)=\frac{1}{2}, x \geq 2 \\ & f(2)=\frac{1}{4}, f(3)=\frac{1}{6} \text{ hathongonongon } \end{aligned} $

Now $f(2022)=\frac{1}{4044}$

$ f(2028)=\frac{1}{4056} $

So, $\frac{1}{f(2022)}+\frac{1}{f(2028)}=4044+4056=8100$