Determinants Question 8

Question 8 - 01 February - Shift 2

For the system of linear equations $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$, which one of the following statements is NOT correct ?

(1) It has infinitely many solutions if $\alpha=2$ and $\beta=-1$

(2) It has no solution if $\alpha=-2$ and $\beta=1$

(3) $x+y+z=\frac{3}{4}$ if $\alpha=2$ and $\beta=1$

(4) It has infinitely many solutions if $\alpha=1$ and $\beta=1$

Show Answer

Answer: (1)

Solution:

Formula: System of equations with 3 variables, consistency of solutions, unique solution

$ \begin{vmatrix} \alpha & 1 & 1 \\ 1 & \alpha & 1 \\ 1 & 1 & \alpha\end{vmatrix} =0$

$\alpha(\alpha^{2}-1)-1(\alpha-1)+1(1-\alpha)=0$

$\alpha^{3}-3 \alpha+2=0$

$\alpha^{2}(\alpha-1)+\alpha(\alpha-1)-2(\alpha-1)=0$

$(\alpha-1)(\alpha^{2}+\alpha-2)=0$

$\alpha=1, \alpha=-2,1$

For $\alpha=1, \beta=1$

$.\begin{matrix} x+y+z=1 \\ x+y+z=b\end{matrix} }$ infinite solution

For $\alpha=2, \beta=1$

$\Delta=4$

$$ \begin{array}{ll} \Delta_1=\left|\begin{array}{lll} 1 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 2 \end{array}\right| \begin{array}{c} =3-1-1 \ =1 \end{array} & \Rightarrow \mathrm{x}=\frac{1}{4} \ \Delta_2=\left|\begin{array}{lll} 2 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 2 \end{array}\right|=2-1=1 & \Rightarrow \mathrm{y}=\frac{1}{4} \ \Delta_3=\left|\begin{array}{lll} 2 & 1 & 1 \ 1 & 2 & 1 \ 1 & 1 & 1 \end{array}\right|=2-1=1 & \Rightarrow \mathrm{z}=\frac{1}{4} \end{array} $$

For $\alpha=2 \Rightarrow$ unique solution