Definite Integration Question 4

Question 4 - 24 January - Shift 2

Let $f$ be a differentiable function defined on $[0, \frac{\pi}{2}]$ such that $f(x)>0$ and

$f(x)+\int_0^{x} f(t) \sqrt{1-(\log _{e} f(t))^{2}} dt=e, \forall x \in[0, \frac{\pi}{2}]$.

Then $(6 \log _{e} f(\frac{\pi}{6}))^{2}$ is equal to

Show Answer

Answer: 27

Solution:

Formula: Leibnitz Theorem, Integration by substitution, Standard formulas for Indefinite Integration

$f(x)+\int_0^{x} f(t) \sqrt{1-(\log _{e} f(t))^{2}} d t=e$

$\Rightarrow f(0)=e$

$f^{\prime}(x)+f(x) \sqrt{1-(\ln f(x))^{2}}=0$

$f(x)=y$

$\frac{d y}{d x}=-y \sqrt{1-(\ln y)^{2}}$

$\int \frac{d y}{y \sqrt{1-(\ln y)^{2}}}=-\int dx$

Put $\ln y=t$

$\int \frac{dt}{\sqrt{1-t^{2}}}=-x+C$

$\sin ^{-1} t=-x+C \Rightarrow \sin ^{-1}(\ln y)=-x+C$

$\sin ^{-1}(\ln f(x))=-x+C$

$f(0)=e$

$\Rightarrow \frac{\pi}{2}=C$

$\Rightarrow \sin ^{-1}(\ln f(x))=-x+\frac{\pi}{2}$

$\Rightarrow \sin ^{-1}(\ln f(\frac{\pi}{6}))=\frac{-\pi}{6}+\frac{\pi}{2}$

$\Rightarrow \sin ^{-1}(\ln f(\frac{\pi}{6}))=\frac{\pi}{3}$

$\Rightarrow \ln \mathrm{f}\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$, we need $ 6 \times \ln \mathrm{f}\left(\frac{\pi}{6}\right) \Rightarrow \left(6 \times \frac{\sqrt{3}}{2}\right)^2=27$.