Definite Integration Question 14

Question 14 - 30 January - Shift 1

$\lim _{x \to 0} \frac{48}{x^{4}} \int_0^{x} \frac{t^{3}}{t^{6}+1} d t$ is equal to

Show Answer

Answer: 12

Solution:

Formula: L’ Hospital Rule, Limit of a function, Leibnitz Theorem

$ L= 48 \lim _{x \to 0} \frac{\int_0^{x} \frac{t^{3}}{t^{6}+1} d t}{x^{4}}(\frac{0}{0}) $

Applying L’Hospitals Rule and using Leibnitz theorem

$L=48 \lim _{x \to 0} \frac{x^{3}}{x^{6}+1} \times \frac{1}{4 x^{3}}$

$L=12$