Definite Integration Question 10

Question 10 - 29 January - Shift 1

Let $f(x)=x+\frac{a}{\pi^{2}-4} \sin x+\frac{b}{\pi^{2}-4} \cos x$, $x \in \mathbb{R}$ be a function which satisfies

$f(x)=x+\int_0^{\pi / 2} \sin (x+y) f(y) d y$. Then $(a+b)$ is equal to

(1) $-\pi(\pi+2)$

(2) $-2 \pi(\pi+2)$

(3) $-2 \pi(\pi-2)$

(4) $-\pi(\pi-2)$

Show Answer

Answer: (2)

Solution:

Formula: Trigonometric Functions of Sum or Difference of Two Angles, Properties of definite integral

$f(x)=x+\int_0^{\pi / 2}(\sin x \cos y+\cos x \sin y) f(y) d y$

$f(x)=x+\int_0^{\pi / 2}((\cos y f(y) d y) \sin x+(\sin y f(y) d y) \cos x) \ldots (1)$

On comparing with

$f(x)=x+\frac{a}{\pi^{2}-4} \sin x+\frac{b}{\pi^{2}-4} \cos x, x \in \mathbb{R}$ then

$\Rightarrow \frac{a}{\pi^{2}-4}=\int_0^{\pi / 2} \cos y f(y) d y \ldots (2)$

$\Rightarrow \frac{b}{\pi^{2}-4}=\int_0^{\pi / 2} \sin y f(y) d y \ldots (3)$

Add $(2)$ and $(3)$

$\frac{a+b}{\pi^{2}-4}=\int_0^{\pi / 2}(\sin y+\cos y) f(y) d y \ldots (4)$

$\frac{a+b}{\pi^{2}-4}=\int_0^{\pi / 2}(\sin y+\cos y) f(\frac{\pi}{2}-y) d y \ldots (5)$

Add $(4)$ and $(5)$

$ \begin{aligned} \frac{2(a+b)}{\pi^{2}-4} & =\int_0^{\pi / 2}(\sin y+\cos y)(\frac{\pi}{2}+\frac{(a+b)}{\pi^{2}-4}(\sin y+\cos y)) d y \\ & =\pi+\frac{a+b}{\pi^{2}-4}(\frac{\pi}{2}+1) \\ (a+b) & =-2 \pi(\pi+2) \end{aligned} $