Complex Number Question 10

Question 10 - 01 February - Shift 1

If the center and radius of the circle $|\frac{z-2}{z-3}|=2$ are respectively $(\alpha, \beta)$ and $\gamma$, then $3(\alpha+\beta+\gamma)$ is equal to

(1) 11

(2) 9

(3) 10

(4) 12

Show Answer

Answer: (4)

Solution:

Formula: Equation of a circle

$\sqrt{(x-2)^{2}+y^{2}}=2 \sqrt{(x-3)^{2}+y^{2}}$

$x^{2}+y^{2}-4 x+4=4 x^{2}+4 y^{2}-24 x+36$

$3 x^{2}+3 y^{2}-20 x+32=0$

$x^{2}+y^{2}-\frac{20}{3} x+\frac{32}{3}=0$

$(\alpha, \beta)=(\frac{10}{3}, 0)$

$\gamma=\sqrt{\frac{100}{9}-\frac{32}{3}}=\sqrt{\frac{4}{9}}=\frac{2}{3}$

$3(\alpha+ \beta+ \gamma)=3(\frac{10}{3}+\frac{2}{3})=12$