Circle Question 7

Question 7 - 30 January - Shift 2

Let $P(a_1, b_1)$ and $Q(a_2, b_2)$ be two distinct points on a circle with center $C(\sqrt{2}, \sqrt{3})$. Let $O$ be the origin and $OC$ be perpendicular to both $CP$ and $CQ$. If the area of the triangle $OCP$ is $\frac{\sqrt{35}}{2}$, then $a_1^{2}+a_2^{2}+b_1^{2}+b_2^{2}$ is equal to

Show Answer

Answer: 24

Solution:

Formula: Area of Right angle triangle

$\frac{1}{2} \times PC \times \sqrt{5}=\frac{\sqrt{35}}{2} $

$ PC=\sqrt{7}$

$ \begin{aligned} & a_1^{2}+b_1^{2}+a_2^{2}+b_2^{2}=OP^{2}+OQ^{2} \\ & =2(5+7)=24 \end{aligned} $