Circle Question 3

Question 3 - 25 January - Shift 2

Points $P(-3,2), Q(9,10)$ and $R(\alpha, 4)$ lie on a circle $C$ with PR as its diameter. The tangents to $C$ at the points $Q$ and $R$ intersect at the point $S$. If $S$ lies on the line $2 x-k y=1$, then $k$ is equal to

Show Answer

Answer: 3

Solution:

Formula: Equation of Tangent in Point form

Equation of circle with PR as diameter is $(x+3)(x-\alpha)+(y-2)(y-4)=0$

$\mathrm{Q}(9,10)$ lies on the circle $\Rightarrow \alpha=13$

equation of circle $x^2+y^2-10 x-6 y-31=0$

Equation of tangent at $Q: 4 x+7 y-106=0$

Equation of tangent $\mathrm{R}=8 x+y-108=0$

From (1), (2) $(x, y)=(\frac{25}{2}, 8)$

$\Rightarrow 2 \mathrm{x}-\mathrm{ky}=1 \Rightarrow 25-8 \mathrm{k}=1 \Rightarrow 8 \mathrm{k}=24 \Rightarrow \mathrm{k}=3$