Circle Question 1

Question 1 - 24 January - Shift 2

The locus of the mid points of the chords of the

circle $C_1:(x-4)^{2}+(y-5)^{2}=4$ which subtend an angle $\theta_i$ at the centre of the circle $C_1$, is a circle of

radius $r_i$. If $\theta_1=\frac{\pi}{3}, \theta_3=\frac{2 \pi}{3}$ and $r_1^{2}=r_2^{2}+r_3^{2}$, then $\theta_2$ is equal to

(1) $\frac{\pi}{4}$

(2) $\frac{3 \pi}{4}$

(3) $\frac{\pi}{6}$

(4) $\frac{\pi}{2}$

Show Answer

Answer: (4)

Solution:

Formula: Distance Formula

In $\triangle CPB$

$\cos \frac{\theta}{2}=\frac{P C}{2} \Rightarrow PC=2 \cos \frac{\theta}{2}$

$\Rightarrow(h-4)^{2}+(k-5)^{2}=4 \cos ^{2} \frac{\theta}{2}$

Now $(x-4)^{2}+(y-5)^{2}=(2 \cos \frac{\theta}{2})^{2}$

$\Rightarrow r_1=2 \cos \frac{\pi}{6}=\sqrt{3}$

$\begin{aligned} & \mathrm{r}_2=2 \cos \frac{\theta_2}{2} \\ & \mathrm{r}_3=2 \cos \frac{\pi}{3}=1 \\ & \Rightarrow \mathrm{r}_1^2=\mathrm{r}_2^2+\mathrm{r}_3^2 \\ & \Rightarrow 3=4 \cos ^2 \frac{\theta_2}{2}+1 \\ & \Rightarrow 4 \cos ^2 \frac{\theta_2}{2}=2 \\ & \Rightarrow \cos ^2 \frac{\theta_2}{2}=\frac{1}{2} \\ & \Rightarrow \theta_2=\frac{\pi}{2}\end{aligned}$