Binomial Theorem Question 8

Question 8 - 25 January - Shift 2

The remainder when $(2023)^{2023}$ is divided by 35

Show Answer

Answer: 7

Solution:

Formula: Binomial Theorem

$(2023)^{2023}$

$=(2030-7)^{2023}$

$=(35 K-7)^{2023}$

$={ }^{2023} C_0(35 K)^{2023}(-7)^{0}+{ }^{2023} C_1(35 K)^{2022}(-7)+\ldots . .+$

…… $+{ }^{2023} C _{2023}(-7)^{2023}$

$=35 N-7^{2023}$.

Now, $-7^{2023}=-7 \times 7^{2022}=-7(7^{2})^{1011}$

$=-7(50-1)^{1011}$

$=-7({ }^{1011} C_0 50^{1011}-{ }^{1011} C_1(50)^{1010}+\ldots \ldots .{ }^{1011} C _{1011})$

$=-7(5 \lambda-1)$

$=-35 \lambda+7$

$\therefore$ when $(2023)^{2023}$ is divided by 35 remainder is 7