Binomial Theorem Question 5

Question 5 - 25 January - Shift 1

If $a_r$ is the coefficient of $x^{10-r}$ in the Binomial expansion of $(1+x)^{10}$, then $\sum _{r=1}^{10} r^{3}(\frac{a_r}{a _{r-1}})^{2}$ is equal to

(1) 4895

(2) 1210

(3) 5445

(4) 3025

Show Answer

Answer: (2)

Solution:

Formula: Properties of Binomial Theorem for Positive Integer

$a_r={ }^{10} C _{10-r}={ }^{10} C_r$

$\Rightarrow \sum _{r=1}^{10} r^{3}(\frac{{ }^{10} C_r}{{ }^{10} C _{r-1}})^{2}=\sum _{r=1}^{10} r^{3}(\frac{11-r}{r})^{2}=\sum _{r=1}^{10} r(11-r)^{2}$

$=\sum _{r=1}^{10}(121 r+r^{3}-22 r^{2})=1210$