Binomial Theorem Question 21

Question 21 - 01 February - Shift 1

The remainder when $19^{200}+23^{200}$ is divided by 49 , is_______

Show Answer

Answer: (29)

Solution:

Formula: Divisibility concept

$(21+2)^{200}+(21-2)^{200}$

$\Rightarrow 2[{ }^{100} C_0 21^{200}+200 C_2 21{ }^{198} \cdot 2^{2}+\ldots . .+{ }^{200} C _{198} 21^{2}.$

$.2^{198}+2^{200}]$

$\Rightarrow 2[49 I_1+2^{200}]=49 I_1+2^{201}$

Now, $2^{201}=(8)^{67}=(1+7)^{67}=49 I_2+{ }^{67} C_0{ }^{67} C_1 \cdot 7=$

$49 I_2+470=49 I_2+49 \times 9+29$

$\therefore$ Remainder is 29