JEE Main 12 Jan 2019 Evening Question 4

Question: A simple harmonic motion is represented by $ y=5(sin3\pi t+\sqrt{3}cos3\pi t)cm $ .The amplitude and time period of the motion are

[JEE Main Online Paper Held On 12-Jan-2019 Evening]

Options:

A) $ 5cm,\frac{3}{2}s $

B) $ 10cm,\frac{2}{3}s $

C) $ 5cm,\frac{2}{3}s $

D) $ 10cm,\frac{3}{2}s $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The given equation is y = 5 $ (sin3\pi t+\sqrt{3}cos3\pi t) $
    $ \Rightarrow $ $ y=2\times 5( \frac{1}{2}\sin 3\pi t+\frac{\sqrt{3}}{2}\cos 3\pi t ) $ $ =10( \cos \frac{\pi }{3}\sin 3\pi t+\sin \frac{\pi }{3}\cos 3\pi t ) $
    $ y=10\sin ( 3\pi t+\frac{\pi }{3} ) $ -.(i)
    Comparing eqn. (i) with standard equation

    $ y=A\sin (\omega t+\phi ) $
    $ \Rightarrow $ $ \omega =3\pi $ and $ A=10cm $
    $ \therefore $ Time period $ T=\frac{2\pi }{\omega }=\frac{2}{3}s $