JEE Main 12 Jan 2019 Evening Question 29

Question: If $ a= \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \\ \end{bmatrix} ; $ then for all $ \theta \in ( \frac{3\pi }{4},\frac{5\pi }{4} ), $ det lies in the interval

[JEE Main Online Paper Held On 12-Jan-2019 Evening]

Options:

A) $ ( \frac{3}{2},3 ] $

B) $ [ \frac{5}{2},4 ) $

C) $ ( 1,\frac{5}{2} ] $

D) $ ( 0,\frac{3}{2} ] $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Here, det $ (A)= \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \\ \end{vmatrix} $ $ =(1+sin^{2}\theta )-sin\theta (0)+1(sin^{2}\theta +1) $
    $ =2(1+sin^{2}\theta ) $ $ \because $ $ \theta \in ( \frac{3\pi }{4},\frac{5\pi }{4} )\Rightarrow \sin \theta \in ( -\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}} ) $
    $ \Rightarrow $ $ {{\sin }^{2}}\theta \in [ 0,\frac{1}{2} ) $
    $ \therefore $ $ \det (A)\in [2,3) $