JEE Main 12 Jan 2019 Evening Question 26

Question: The equation of a tangent to the parabola, $ x^{2}=8y, $ which makes an angle $ \theta $ with the positive direction of x-axis is

[JEE Main Online Paper Held On 12-Jan-2019 Evening]

Options:

A) $ x=y\cot \theta -2\tan \theta $

B) $ y=x\tan \theta -2\cot \theta $

C) $ x=y\cot \theta +2\tan \theta $

D) $ y=x\tan \theta +2\cot \theta $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Given equation of parabola is $ x^{2}=8y $
    $ \therefore $ $ \frac{8dy}{dx}=2x\Rightarrow \frac{dy}{dx}=\frac{x}{4}=\tan \theta $ (Given)
    $ \Rightarrow x=4\tan \theta $
    $ \therefore $ $ y=2{{\tan }^{2}}\theta $
    Now, equation of tangent at $ (4\tan \theta ,2{{\tan }^{2}}\theta ) $ is $ y-2{{\tan }^{2}}\theta =\tan \theta $ $ (x-4\tan \theta ) $
    $ \Rightarrow $ $ x=y\cot \theta +2\tan \theta $