JEE Main 12 Jan 2019 Evening Question 11

Question: If $ ^{n}C _4,{{,}^{n}}C _5 $ and $ {{,}^{n}}C _6 $ are in A.R, then n can be

[JEE Main Online Paper Held On 12-Jan-2019 Evening]

Options:

A) 12

B) 14

C) 9

D) 11

Show Answer

Answer:

Correct Answer: B

Solution:

  • Since, $ ^{n}C _4,{{,}^{n}}C _5 $ and $ {{,}^{n}}C _6 $ are in A.P.
    $ \therefore $ $ 2{{\times }^{n}}C _5{{=}^{n}}C _4{{+}^{n}}C _6 $
    $ \Rightarrow 2\times \frac{n}{5(n-5)}=\frac{n}{4(n-4)}+\frac{n}{6(n-6)} $
    $ \Rightarrow $ $ \frac{2}{5(n-5)}=\frac{1}{(n-4)(n-5)}+\frac{1}{6\times 5} $
    $ \Rightarrow $ $ \frac{2}{5}(n-4)=1+\frac{(n-4)(n-5)}{6\times 5} $
    $ \Rightarrow $ $ 12(n-4)=30+n^{2}-9n+20 $
    $ \Rightarrow $ $ 21n-n^{2}-98=0\Rightarrow n^{2}-21n+98=0 $
    $ \Rightarrow $ $ (n-14)(n-7)=0\Rightarrow n=7,14 $ But only n = 14 lies in the options.