JEE Main Solved Paper 2017 Question 11

Question: Let $ a,b,c\in R. $ If $ f(x)=ax^{2}+bx+c $ is such that $ a+b+c=3 $ and $ f(x+y)=f(x)+f(y)+xy,\forall x,y\in R, $ then $ \sum\limits _{n=1}^{10}{f(n)} $ is equal to: JEE Main Solved Paper-2017

Options:

A) 225

B) 330

C) 165

D) 190

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ f(x)=ax^{2}+bx+c $ $ f(1)=a+b+c=3 $ Now $ f(x+y)=f(x)+f(y)+xy $ put $ y=1 $ $ f(x+1)=f(x)+f(1)+x $ $ f(x+1)=f(x)+x+3 $ Now $ f(2)=7 $ $ f(3)=12 $ Now $ S _{n}=3+7+12+……t _{n} $ ?.. $ S _{n}=3+7+……{t _{n-1}}+t _{n} $ ?.. On subtracting from $ t _{n}=3+4+5+….. $ upto n terms $ t _{n}=\frac{(n^{2}+5n)}{2} $ $ S _{n}=\sum{t _{n}}=\sum{\frac{(n^{2}+5n)}{2}} $ $ S _{n}=\frac{1}{2}[ \frac{n(n+1)(2n+1)}{6}+\frac{5n(n+1)}{2} ] $ $ S _{10}=330 $