JEE Main On 8 April 2017 Question 6

Question: The integral $ \int\limits _{\frac{\pi }{12}}^{\frac{\pi }{4}}{\frac{8\cos 2x}{{{(tanx+cosx)}^{3}}}}dx $ equals: [JEE Online 08-04-2017]

Options:

A) $ \frac{13}{256} $

B) $ \frac{15}{64} $

C) $ \frac{13}{32} $

D) $ \frac{15}{128} $

Show Answer

Answer:

Correct Answer: D

Solution:

= $\int\limits _{\frac{\pi }{12}}^{\frac{\pi }{4}} \frac{8\cos 2x}{{\tan x+\cot x}^3}dx$

$\int\limits _{\frac{\pi }{12}}^{\frac{\pi }{4}} \frac{8\cos 2x8{\sin}^3x{\cos}^3x}{({{\sin}^2 x+{\cos}^2 x})^3 8}dx$

$\int\limits _{\frac{\pi }{12}}^{\frac{\pi }{4}} \frac{8\cos 2x{\sin 2x}^3}{({{\sin}^2 x+{\cos}^2 x})^3 8}dx$

$\int\limits _{\frac{\pi }{12}}^{\frac{\pi }{4}} {\cos 2x{\sin 2x}^3}dx$

put $\sin 2x=t\to 2 \cos 2x.dx=dt$

when $x=\frac{\pi}{12}\to t=\frac{1}{2}$

and $x=\frac{\pi}{4}\to=1$

$\int\limits _{\frac{1}{2}}^{1} {\cos 2x{t}^3}\frac{dx}{2\cos 2x}$

$\int\limits _{\frac{1}{2}}^{1} {{t}^3}\frac{dx}{2}$

$\frac{1}{2} [\frac{{t}^4}{4}]_{\frac{1}{2}}^{1} $

$\frac{1}{8}[1-\frac{1}{16}]$

$\frac{15}{128}$